2018 חורף מועד ב’
שאלה 1
תרגיל 1
נשתמש בשיטת ניוטון. נשים לב שבמקרה שלנו:
נתחיל באיטרציות:
ניתן לראות שהשיטה תמשיך להתכנס לכיוון
תרגיל 2
השיטה שמתוארת בשאלה היא אינטרפולציית לגרנג’. השגיאה שלו נתונה ע”י:
במקרה שלנו
נציב בנוסחה לשגיאה:
נשים לב שהמקסימום והמינימום של
לפיכך:
תרגיל 3
מאחר והפונקציה היא אי-שלילית, לא נוכל להשתמש בשיטת החציה. אבל, כן נוכל להשתמש בניוטון-רפסון כי הפונקציה גזירה.
תרגיל 4
לא יודע. מי לעזאזל ניסח את השאלה הזאתי.
תרגיל 5
שגיאת שיטת סימפסון המרוכבת נתונה ע”י:
עבור המקרה שלנו:
הפונקציה
נסיק שהשגיאה בערכה המוחלט תהיה מהצורה:
נדרוש שהיא לא תעלה על
נסיק כי מספר התת-תחומים
ולכן מספר התת-תחומים המינימלי הוא
לא מבין מה עובר עליהם בפתרון שלהם.
תרגול 6
האלגוריתם רץ מהשורה האחרונה, ובכל שורה על האיברים האחרונים בשורה. כלומר, הוא רץ על מטריצה משולשת עליונה.
תרגיל 7
הפתרון של המשוואה היא מהצורה:
אם נתייחס גם לתנאי שפה, נגלה שרק אם
אז חד משמעית יש לבעיה הנתונה פתרון, אני לא מבין מה הם רוצים בתשובות שלהם.
תרגיל 8
זוהי מטריצה תלת אלכסונית, ולכן נוכל להשתמש בשיטת תומס לפתירתה, שהיא בעלת סיבוכיות
תרגיל 9
זוהי משוואה לינארית, ולכן לפי שיטת הירי למשוואות לינאריות, נוכל לפתור אותה עם שתי יריות עם תנאי התחלה שונים.
שוב ניסוח גרוע של התשובות כי סעיף א’ זה פשוט מקרה פרטי של סעיף ג’. בסעיף א’ הבחירה של
הייתי מערער את החיים שלי על המבחן הזה.
תרגיל 10
שיטת גאוס-לג’נדר ב-
שאלה 2
סעיף א’
מהגדרת הנורמה המושרית עבור מטריצות:
אם
שזה בדיוק הנורמה-
סעיף ב’
נמצא שורש חיובי
איטרציה ראשונה, בקטע
לכן את האיטרציה השנייה נבצע בקטע
לכן את האיטרציה השלישית נבצע בקטע
לאחר שלוש חציות הקירוב שלנו לשורש הוא:
סעיף ג’
נרצה למצוא את ה-
נשתמש באינטרפולציית לגרנג’:
הפולינומי לגרנג’ שלנו:
נציב
כעת נוכל למצוא את ערך הפולינום ב-
נציב ונקבל:
ולכן:
סעיף ד’
לפי שיטת SOR (בכתיב מטריצי):
נציב נתונים ונקבל:
לסיכום:
נרצה למצוא את ההתכנסות לכל משתנה, ולוודא שהשגיאה היחסית לכל משתנה קטנה מ-
עבור המקרה שלנו:
ולכן השיטה לא מתכנסת.
סעיף ה’
נרצה להעביר את האינטגרל לתחום
לכן:
נציב באינטגרל:
נסמן:
נדרש אינטגרציית גאוס בשתי נקודות:
לכן הקירוב:
נציב:
נקבל:
סעיף ו’
נשתמש בשיטת ההפרשים המרכזיים עבור נגזרת שנייה:
נציב במשוואה שלנו ונקבל:
נסמן
לפי שיטת ההפרשים לפנים נמצא ביטוי יותר נוח עבור התנאי שפה הראשון:
נעבוד בתחום
באיטרציה הראשונה:
נציב את התנאי שפה:
נציב
מפתרון מערכת המשוואות נקבל:
מהתנאי שפה:
שאלה 3
פה נמאס לי להתכונן למבחן.
סעיף א’
נוסחה זו משתמשת בשתי ערכים בתוך הקטע
ולכן:
סעיף ב’
השגיאה
סעיף ג’
נתונה הבעיה הבאה עבור
כדי לבצע הורדת סדר נסמן:
נציב במשוואות כדי לקבל:
נסכם שיש לנו את המערכת מד”ר:
בכתיב וקטורי:
סעיף ד’
נשתמש בשיטת אויילר המתוקנת עם
ולכן:
ולפיכך: