סטודנט א’ | סטודנט ב’ | |
---|---|---|
שם | עידו פנג בנטוב | ניר קרל |
ת”ז | 322869140 | 322437203 |
דואר אלקטרוני | ido.fang@campus.technion.ac.il | nir.karl@campus.technion.ac.il |
Question 1
Part a
We know that the maximum [[MNF1_004 Machining Processes#Turning#Key Parameters and Equations|cutting speed]] is given by:
Therefore the rotational speed is
Substituting the given maximum allowed cutting speed, and its appropriate diameter of the workpiece, we get the following rotational speed:
Part b
For the minimal diameter,
Therefore, the machine needs to allow rotational speeds in the following range:
By allowing the rotational speed to vary, we get shorter [[MNF1_004 Machining Processes#Turning#Key Parameters and Equations|cutting time]]:
Part c
From the drawings, we can see that the required surface finish is
We also know that:
\begin{aligned}
P_{c} & =F_{c}V_{c} \[1ex]
&= K_{s}fdV_{c}
\end{aligned}
\begin{gathered}
P=\pu{369N.mm^{-2}}\cdot \pu{0.2mm}\cdot \pu{5mm}\cdot \pu{250m.min^{-1}} \[1ex]
\boxed {
P=\pu{1.538kW}
}
\end{gathered}
\begin{aligned}
t & =\dfrac{L}{fN} \[1ex]
& = \dfrac{\Delta D}{2fN}
\end{aligned}
t=\int_{D_{\text{min}}}^{D_{\text{max}}} \dfrac{1}{2fN} , \mathrm{d}D
\begin{gathered}
t =\dfrac{\pu{40mm}}{2\cdot \pu{0.2mm}\cdot \pu{1326.3rpm}} \[1ex]
\boxed {
t =\pu {4.524s }
}
\end{gathered}
\begin{aligned}
t & =\int_{D_{\min_{}}}^{D_{\max_{}}} \dfrac{1}{2fN} , \mathrm{d}D \[1ex]
& =\int_{D_{\min_{}}}^{D_{\max_{}}} \dfrac{\pi D}{2fV_{c}} , \mathrm{d}D \[1ex]
& =\dfrac{\pi}{2fV_{c}}\left[ \dfrac{1}{2}D^{2} \right]{D{\min_{}}}^{D_{\max_{}}} \[1ex]
& = \pu{16mm.min^{-1}.m^{-1}}
\end{aligned}
\boxed {
t=\pu {3.016s }
}
\begin{gathered}
\beta=\dfrac{360^{\circ}}{z} \[1ex]
\boxed {
\beta=45^{\circ}
}
\end{gathered}
\begin{gathered}
\cos(180^{\circ} -\alpha)=\dfrac{w-R}{R} \[1ex]
180^{\circ} -\alpha=45.573^{\circ} \[1ex]
\boxed {
\alpha=134.427^{\circ}
}
\end{gathered}
\begin{gathered}
n=\dfrac{\alpha}{\beta} \[1ex]
\boxed {
n\approx 3
}
\end{gathered}
F_{c}=K_{s}f_{t}d\cos\theta
F_{c}=K_{s}f_{t}d(\cos\theta+\cos(\theta-\beta)+\cos(\theta-2\beta))
-\dfrac{\pi}{2}\leq \theta,\theta-\beta,\theta-2\beta\leq -\dfrac{\pi}{2}+\alpha
0\leq \theta\leq \dfrac{\pi}{4}
\boxed {
F_{c}=\pu {1892.74N }
}
\boxed {
F_{c}=1338.37N
}
\begin{aligned}
F_{c}=K_{s}wd
\end{aligned}
\boxed{F_{c}=\pu {133.28kN }}
\begin{aligned}
P_{c} & =F_{c}v \[1ex]
& =F_{c}f_{t}zN \[1ex]
& =F_{c}f_{t}z \dfrac{V_{c}}{\pi D}
\end{aligned}
\boxed {
P_{c}=\pu{2.83kW}
}
\begin{aligned}
t & =\dfrac{L+D}{v} \[1ex]
& =\dfrac{L+D}{f_{t}z (V_{c}/\pi D)}
\end{aligned}
\boxed{t=\pu {10.37s } }